
Introduction to Red
From system programming to scripting

Introducing myself

• Nenad Rakocevic, 40, french

• Programming since 25 years:
– in C/C++, *Basic, ASM, REBOL, web client-side languages,…
– was a happy Amiga user and registered BeOS developer

• Founder of two software companies in Paris:
– Softinnov

– ElasticSoft

• Author of several libraries for REBOL:
– MySQL, PostgresQL, LDAP native drivers
– UniServe: asynchronous, event-driven network engine

– Cheyenne Web Server: full-featured web application server

– CureCode: very fast web-based bug tracker (Mantis-like)

Why make yet another language?

To build an efficient new tool.

To have an open source implementation of REBOL language.

It is a very exciting challenge.

What is REBOL?

• Invented by Carl Sassenrath (AmigaOS kernel father)
• Available since 1998
• Abandoned since a year by its author
• Closed source (part of standard library has been opened)

• Interpreted
• Multi-paradigm (imperative, functional, OO, declarative)
• Strong meta-programming abilities

Red quick tour: Genealogy

LISP

Red

Lua Scala

REBOL

Forth Logo

Red quick tour: Natural range of application

Hardware

DSL

Scripting

Applications

OS

Drivers

Abstraction level

C Pascal Java C++

Ruby

Python

ASM

Javascript

Red

Red/System

REBOL

Red quick tour: Language stack

Red Red/System Native code
compiles to compiles to

Red quick tour: Red vs Red/System (1/6)

Red Red/System

Automatic

Compacting garbage collector

Manual

Allocate / Free

Memory management

Red quick tour: Red vs Red/System (2/6)

Red Red/System

High level abstractions Very limited native I/O

I/O

Red quick tour: Red vs Red/System (3/6)

Red Red/System

Rich, more than 50 types

Sophisticated type inference

Poor, 6 primitives types

Limited type inference

Type system

Red quick tour: Red vs Red/System (4/6)

Red Red/System

Boxed values Primitives values

32 bits 96 bits

123 123

32 bits

Header Payload

Values

Red quick tour: Red vs Red/System (5/6)

Red Red/System

Reasonably fast,

C performances by a
factor of 10-20

Very fast,

C performances by a
factor of 1-3

Performances

Red quick tour: Red vs Red/System (6/6)

Red Red/System

No compiler yet

Runtime partially done

Beta state

Completion

Red quick tour: Goals (1/7)

Simplicity

An IDE should not be necessary to write code.

Red quick tour: Goals (2/7)

Compactness

Being highly expressive maximizes productivity.

Red quick tour: Goals (3/7)

Speed

If too slow, it cannot be general-purpose enough.

Red quick tour: Goals (4/7)

Be Green
Have a Small Footprint

Because resources are not limitless.

Red quick tour: Goals (5/7)

Ubiquity

Spread everywhere.

Red quick tour: Goals (6/7)

Portability
Write once run everywhere

That’s the least expected from a programming language.

Red quick tour: Goals (7/7)

Flexibility

Best Good fit for any task!

Red quick tour: Some features…

• Same syntax as REBOL, most of its semantic rules
• Strong DSL / dialecting support
• Red/System dialect inlined in Red

• (JIT) compiled instead of interpreted
• Statically typed + type inference
• Embeddable: distributed as a shared library with host

languages bindings

• Concurrency support
– Task parallelism: using "actor" abstraction
– Data parallelism: using parallel collections

Red quick tour: Types tree

Rich type system: up to 50 first-class datatypes

value!

series!

symbol! scalar!

word! lit-word! set-word! …

block! string!

map!path! hash! list! …

context!

object! function!

integer! date! char! …

url! email!

error!

time!

module!

tag!ipv6! file!

none!

tuple!

binary!

action! closure! …

…

logic!

issue!

port!

Red quick tour: Target platforms

Red

DesktopEmbedded

Windows

Linux

MacOS X

Syllable

FreeBSD

Android devices

iOS devices

Arduino boards

(AVR 8/32-bit)

VM

JVM
.NET AVM2

(Flash)

Javascript

FreeBSD

Haiku

Red quick tour: bootstrapping

1. Red and Red/System compilers written in
REBOL

2. Red/System compiler rewritten in Red

3. Red compiler rewritten in Red

4. Red JIT-compiler written in Red

Red quick tour: Project

• BSD license

• Source code hosted on Github since March 2011
– version 0.2.1, 3 commiters, 537 public commits
– 175 tickets (164 closed)
– 8614 unit tests (framework built by Peter WA Wood)
– 260 KiB of sources for Red/System
– 3800 LOC for Red/System compiler
– 2200 LOC for Red/System linker

Red quick tour: Planning

• Sept. October 2011:
– beta alpha of Red (no JIT)
– alpha beta of ARM support
– alpha of the IDE

• Dec. January 2012:
– V1.0 beta of Red (no JIT)
– beta of the IDE

• Q1 2012:
– beta of Red JIT-compiler
– V1.0 of Red
– v1.0 of IDE

Red online channels

• Home: http://red-lang.org

• Twitter: #red_lang

• IRC channel: #red-lang on freenode

• Mailing list hosted on Google Groups

Red/System

Red/System: features (1/2)

• Purely imperative, C-level language, with a Red syntax

• Statically compiled (naïve compilation for now)

• Limited type system:
– Logic!, byte!, integer!, struct!, pointer!, c-string!
– Simple type inference

– Type casting supported

• Compiler directives: #define, #include, #import, #syscall, #if,
#either, #switch,…

• Low-level CPU support (interruptions, I/O, stack, privileged mode)
• Inlined ASM support

Red/System: features (2/2)

• Linker
– Link-time shared libraries binding

– Output types: Exe, Shared library, Static library

– Formats: PE, ELF, mach-o, Intel-hex
– Link third-party static libraries

• Targets: IA-32, ARM, JVM, AVM2, x64, CLR

• Red/System as an inlined dialect in Red

Red/System: Hello world!

Red/System [

title: "Hello World demo"

]

print "hello world!"

Red/System: variables and expressions

a: 1

b: a + 2 * 4

c: a < b

d: "hello"

if a < b [print "b is greater"]

either a < b [print "b"][print "a"]

print either a < b ["b"]["a"]

print [a " is less than " b "," c "," d]

1 is less than 12,true,hello

print-wide [a "is less than" b c d]

1 is less than 12 true hello

Red/System: functions

nothing: function [][]

print-zero: function [n [integer!]][

print either zero? n ["zero"]["not zero"]

]

abs: function [n [integer!] return: [integer!]][

either positive? n [n][negate n]

]

uppercase: function [s [c-string!] /local offset][

offset: #"a" - #"A"

if any [#"a" <= b/1 b/1 <= #"z"][

s/1: s/1 + offset

]

]

Red/System: shared libraries

#import [

"libc.so.6" cdecl [

allocate: "malloc" [

size [integer!]

return: [byte-ptr!]

]

free: "free" [

block [byte-ptr!]

]

quit: "exit" [

status [integer!]

]

printf: "printf" [[variadic]]

]

]

printf ["%i %s" 123 "hello"]

123 hello

Red/System: CPU low-level features

timer-handler: func [[interrupt]][...]

#interruptions [

0000h :reset

0004h :timer-handler

]

a: read-io 0376h

write-io 0376h 1

a: get-modes privileged

set-modes privileged false

set-modes interrupt true

set-modes interrupt-mask FF000000h

Red/System: keywords

% * +

- -** /

// /// <

<< <= <>

= > >>

>= >>> alias

all and any

as assert comment

declare either exit

false func function

if not or

pop push return

size? true until

while xor

switch case repeat

loop set-modes get-modes

read-io write-io

Red/System: library bindings

• C library binding
• cURL binding
• ZeroMQ binding
• SDL binding
• GTK binding

All written by Kaj de Vos.

Let see a few demos written with these bindings…

Arduino Uno

Microcontroller ATmega328

Flash Memory 32 KB of which 0.5 KB used by bootloader

SRAM 2 KB
EEPROM 1 KB (ATmega328)

Clock Speed 16 MHz

