Introducing myself...

Nenad aka "DocKimbel" Rakocevic, I

Programming for 25 years: C/C++, *Basic, ASM, REBOL, web client-side
languages, ...

Founder of a software company in Paris: Softinnov

Author of several libraries for REBOL.:
MySQL, PostgresQL, LDAP native drivers
UniServe: asynchronous, event-driven network engine
Cheyenne Web Server: full-featured web application server
CureCode: very fast web-based bug tracker (Mantis-like)
Various others tools, game, demos...
Was a happy Amiga user and registered BeOS developer

Why am | using REBOL for 11 years?

Great scripting language

Great prototyping tool

Simple cross-platform graphic engine (View)
Symbolic & Meta-programming

Code / Data duality

DSL-oriented

Great designer behind: Carl Sassenrath

Why | don't want to use REBOL anymore?

Closed source

Slow (benchmark)

No multithreading support

Mostly glue language, not general-purpose enough
Not (easily) embeddable in third-party apps

Can't run on popular VM (JVM, CLR)

Sometimes designed for "Bob the artist”, rather than
"John the programmer"

What Is the state of REBOL world? (1/2)

1 How REBOL began 14 years ago...

What is the state of REBOL world? (2/2)

1 ...and where it Is today

What to do then?

1 Give up and pick up another language®?

21 Build an alternative?

| chose the 2"d option!

My answer Is: Red !

ed[uced] REBOL dialect
Fully open source (MIT/BSD)
Statically compiled + JIT compiled
Parallel programming support
General purpose (system programming support)
Can be used for scripting like REBOL (REPL console)
Easily embeddable in other apps (think Lua)
Built-in small & scalable web server

Work in progress...started 3 months ago, but thinking
about it for years!

ed Language Features Tour

1 Syntax: strongely inspired by REBOL
1 Semantic rules: most of REBOL
1 Type system
* rich, most of REBOL types
* new types as pluggable modules (literal form accessible)

* type inference, when possible
» types mismatches caught at compile-time instead of runtime

® First-class functions and HOF support
1 Meta-programming support (JIT-compiled code)

REBOL features not supported by Red

i Too "abstract" code
» Foo: func[a][a/b/c] =>"a"can be object!, function!, block!,...

1 Dynamic word binding
= REBOL.: can change the scope of a word! value dynamically
ed v1.0: static scoping only

= REBOL-like word binding semantics could be added later at a
higher level in Red

ed Architecture Overview

User Code

|:| : Coded in Red Language

D - Coded in Red/System Dialect

User Scripts
User Applications
3rd-party Librairies

Standard Library

Lexical
Parser

Memory
Manager

Executable Image

Operating System

ed Memory Model

1 Thread-local memory allocation
= Arrays of 128-bit cells

1 Possibility for shared immutable data structures

1 Garbage collector
= Compacting collector
» Stop-the-thread GC model for v1.0
* |[ncremental GC in v2

ed/System Language

Purely imperative, C-level language, with a Red syntax
Statically compiled (naive compilation for now)

Limited type system:
* Integer, struct, pointer, string (no 1st class functions)
= No type inference

Inlined ASM support

Linker
= Qutput types: Exe, DLL, Lib
= Formats: PE, ELF, mach-o

Targets: |A-32, ARM, x64, JVM, CLR
ed/System as an inlined dialect in Red

ed Concurrent & Parallel programming

1 "PPP challenge" (Intel)
= We now live now in a multi-core CPU world
= Window of opportunity for new solutions / languages

1 Task parallelism
» EXxecute several threads of code on multiple Cores at the same
time
ed will provide an Actor-like abstraction
2 Data parallelism
» Process a data structure with several Cores at the same time
ed will provide a parallel series abstraction

Bootstrapping Red (chicken & egg problem)

1)
2)
3)
4)
5)
6)
7)
8)
9)

Write Red/System compiler in REBOL [X]
Write Red linker in REBOL [X]
Write Red runtime in Red/System

Write Red static compiler in REBOL

Write Red standard library in Red

Rewrite Red/System compiler in Red

Rewrite Red static compiler in Red

Write Red JIT-compiler in Red

If still alive, take some good rest! ©

ed IDE

Mandatory for most programmers
Code edition: Scintilla component

Strong focus on debugging capabilities
= step-by-step Red code debugging
= step-by-step Parse rules debugger
» |/O data streams capturing for inspection

Code Profiler
GUI in Red with an OS abstraction layer (SWT-like)

Code bubbles support (v2)

ed Key Success Factors

1 Time to market
= As short as possible
= Short iterations (no "tunnel" during months)
= Critical for success

8 Community: reach a critical mass
= Keep community informed (web sites, blog, twitter,...)
= Ease user contributions (github)
= Be open (avoid "ivory tower" syndrom)
»= Goal: reach critical mass (get enough contributors)

Roadmap

1 Sept. 2011
» peta of Red (no JIT)
» alpha of ARM support
= alpha of the IDE

1 Dec. 2011:
= v1.0 of Red (no JIT)
= peta of the IDE

1 Q1 2012:

* peta of Red JIT-compiler
= v1.0 of IDE

If you think this is not doable...watch me!

1 On Red's blog: http://red-lang.org

® On Red's twitter channel: #red_lang

...See you next year!

