
A BNF grammar of Red/System

Introduction

This grammar aims to describe, in a formalized way, the main syntactic and semantic properties of the
Red/System language. The order of presentation of the language elements is systematic rather than
tutorial. Thus it complements the document �Red/System Language Specifications� to be found at
http://static.red-lang.org/red-system-specs-light.html, which is the authoritative source for
Red/System. In case of discrepancies, it is that document which prevails, in combination with the actual
text of the compiler, to be found at https://github.com/dockimbel/Red.

Explanations

For simplicity of presentation end-of-line comments are ignored. Also, the internal structure of lexical
elements is not specified � all lexical elements are assumed to have been analysed and verified.

For explanatory purposes, some rules are repeated in several places. Moreover, the grammar is
somewhat ambiguous; it is known, however, that the language can be analyzed in one pass by recursive
descent. For completeness, the facilities for compile-time source manipulation (source file inclusion,
conditional compilation and macro definition and expansion) are described in some detail, even though
their treatment takes place before syntactic and semantic analysis, and in the rest of the description that
treatment is assumed to have taken place already.

Each context-free rule (written in Courier New) is followed by semantic comments. Non-terminals of
the grammar are referred to in these comments by being quoted in italics. When a semantic comment
refers to the compilation order, this is to be understood as follows: all elements directly contained in the
program are compiled first, in lexical order, including the function definitions (as regards the function
name and the specification). Only then are the function bodies compiled, in the lexical order of
occurrence of the function definitions.

Notational conventions:
� production rules are introduced by ::=
� non-terminals are enclosed in < >
� all other symbols in the rules stand for themselves, i.e. they are terminals

(except the meta-symbols | { } o * +, see next)
� alternatives are separated by |
� grouping is indicated by braces {} (this may contain alternatives*)
� optional elements are indicated by o
� repeating elements are indicated by * (zero or more times) and + (one or more times)
� some terminals are circumscribed by natural language in quotes ""

Author Rudolf W. MEIJER
Document date 28-Nov-12
Red/System Language Specification v. 37 of 24-Nov-12
Compiler source code version consulted 3ff5846 of 27-Nov-12

* These braces are not to be confused with the delimiters of a REBOL literal string!

id763981484 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

http://static.red-lang.org/red-system-specs-light.html
https://github.com/dockimbel/Red

Table of contents

Section Selected non-terminals p.

1. program and directives <program> 3
 <body-block> 3
 <comment> 3
 <include-directive> 3
 <conditional-compilation-directive> 3
 <macro-directive> 4
 <enumeration-directive> 4
 <import-directive> 5
 <syscall-directive> 5
2. definitions <definition> 6
 <function-definition> 6
 <context-definition> 7
 <alias-definition> 7
3. names and scopes: summary 8
4. statements <statement> 9
 <function-call> 9
 <assignment> 9
 <return-statement> 10
 <conditional-statement> 10
 <with-block> 10
 <assertion> 10
5. expressions <expression> 11
 <value> 11
 <simple-value> 11
 <get-word> 11
 <qualified-word> 11
 <path> 11
 <type-cast> 12
 <short-circuit> 12
 <size-enquiry> 13
 <unary-operator> 13
 <binary-operation> 13
 <infix-operator> 13
6. binary operations 14
7. types <type> 15
 <simple-type> 15
 <enumeration-type> 15
 <composite-type> 15
 <pointer-type> 15
 <struct-type> 15
 <base-type> 15
 <alias>
 <ext-type> 15
8. type compatibility rules 16
9. literals and words <literal> 17

<word> 17

Annex 1: reserved and predefined words 18

Annex 2: the system structure 19

Annex 3: type numbers 20

1. program and directives

<program> ::= Red/System [<meta-data> 0] <body-block>
<meta-data> ::= "not part of this specification�
<body-block> ::=

[{<directive> | <definition> | <statement> | <expression> | <comment>} *]

A program is a top-level body-block preceded by a header which may contain meta-data. The
other occurrences of body-blocks are in functions and contexts (see section 2). Directives (see
below) and definitions (see section 2) may only occur at the level of a body-block. Within a body-

block, statements and expressions may be mixed indiscriminately. The execution of a statement
produces no value. The evaluation of an expression occurring directly within a program will
produce a value but this will be discarded. In some other constructs where both statements and
expressions are allowed, the value produced by the evaluation of an expression may or may not
be discarded, as described below when discussing the relevant constructs. Body-blocks determine
the scope of names defined in them, as described in section 3.

<comment> ::= comment {<expression> | [<expression> +]}

A comment is ignored by the compiler. Except when otherwise noted in what follows, it may
occur wherever a statement or expression is allowed. Note that free form comments may be
achieved by letting the expression be a string value.

<directive> ::= <source-manipulation-directive>

| <enumeration-directive> | <interface-directive>

Source-manipulation-directives are treated by the compiler in a preliminary phase (�load time�)
before the syntactic and semantic analysis proper. Such directives may contain other directives,
allowing a powerful control over the source text, which can be used, e.g. to have a single
collection of source files addressing several target machine architectures and operating systems.
The other directives are in fact specialized definition constructs, which are treated by the
compiler along with other definitions proper.

<source-manipulation-directive> ::=
 <include-directive>
 | <conditional-compilation-directive>
 | <macro-directive>

<include-directive> ::= #include %<file>
<file> ::= "file name in REBOL format"

The include-directive will insert the text in the source file at the current position in the source
text.

<conditional-compilation-directive> ::=
 #if <option-test> <body-block>
 | #either <option-test> <body-block> <body-block>
 | #switch <option-name> [{<option-value> <body-block>} +]
<option-test> ::= <option-name> <comparison-op> <option-value>
<option-name> ::= <word>
<option-value> ::= <integer> | <decimal> | <word> | '<word>

Conditional-compilation-directives insert the text contained within the selected body-block (not
including the square brackets) at the current position in the source text, based on the comparison
of the value assigned to the option-name with the specified option-value. The operation of the
tests in the #if, #either and #switch variants should be self-explanatory. The assignment of a
value to the option-name occurs when calling the Red/System compiler from the host operating
system. The allowed option-names and option-values are documented in a configuration file

<macro-directive> ::= <simple-macro-directive> | <parametrized-macro-directive>

Macro-directives serve to give names to frequently used sequences of lexical items (not only
values, but also program fragments). This compile-time substitution facility also allows a basic
form of parametrization.

<simple-macro-directive> ::= #define <word> {<lex-item> | [<lex-item> +]}

The word is defined as a simple (parameterless) macro. Example: #define zero? [0 =]. This
shows that the sequence of lexical items need not be a proper construct of the language.

<parametrized-macro-directive> ::= #define <word>(<macro-arg> +)
 {[<lex-item> +] | (<lex-item> +)}

The word is defined as a parametrized macro.

<macro-arg> ::= <word>

The parameters in the macro definition (macro-arg) must be words. All words must be different
and they must not be equal to the names of built-in functions and operators (see section 5).

<macro-call> ::= <word> | <word>(<lex-item> +)

The word should have been defined as a macro name. At the point of usage, the word gets
replaced by the lex-item(s) specified in the definition. If the macro is a parametrized one, every
occurrence of a macro-arg among those lex-items will be replaced by the corresponding lex-item
from the macro-call. In this case, the number of lex-items supplied in the macro-call should be
equal to the number of macro-args in the definition; if the definition was a sequence enclosed in
(), the result is also enclosed in (); if the sequence was enclosed in [], these delimiters are
removed.�

<lex-item> ::= "any lexical item of the Red/System language"

Lex-items that are delimiters occurring normally in pairs ([] { } () " ") can only be
specified when properly paired.

<enumeration-directive> ::= #enum <word> [{<label> | {<label>:} + <integer>} +]

Enumeration-directives serve to define names for integer values, and synonyms for integer!.

The word following #enum is defined in the current scope as an enumeration-type-name that is
treated as synonym with integer!. This may serve documentation purposes.

<label> ::= <word>

The words occurring as labels in the enumeration-directive are defined in the current scope as
enumeration-value-names which may be used as integers. The have the same constraints as
enumeration-type-names. The values allocated start at 0 for the first one and increase by 1 for
every subsequent one, except if the label is followed by :, in which case the following integer
specified is taken as the value; subsequent labels without : are again given values increasing by
1 etc. More than one label with the same integer value is allowed, and the specified integer
values need not be in increasing order.

� Since the replacements described above are done before syntactic and semantic analysis, caution is needed when using
macros. E.g. with the above example, the following program will not compile correctly:
 #define zero? [0 =] if zero? a + b [print "yes"]
since the expression 0 = a + b will be analyzed as (0 = a) + b and a logic! value cannot be added to an integer! one.
In other words: macros are not functions!

<interface-directive> ::= <import-directive> | <syscall-directive>

Interface-directives serve to define the interface to external library functions (import-directive)
or internal system functions (syscall-directive).

<import-directive> ::= #import [<library-functions> +]

<library-functions> ::=
 <c-string> {stdcall | cdecl} [{<word>: <c-string> <ext-spec-block>} +]

The first C-string must identify a valid library file (.dll or equivalent). Each of the words will
be defined as a library function, with calling convention stdcall or cdecl, whose body is
identified within the library file by the following C-string, and with the corresponding ext-spec-

block.

<syscall-directive> ::= #syscall [{<word>: <integer> <ext-spec-block>} +]

Each of the words will be defined as a system-call function whose body is identified by the
following integer, and with the corresponding ext-spec-block.

2. definitions

<definition> ::= <function-definition> | <context-definition> | <alias-definition>

Definitions serve to introduce names for functions and contexts (namespaces) as well as aliases
for struct-types and func-types.

<function-definition> ::= <word>: {func | function} <spec-block> <body-block>

The word will be defined as a function with the indicated specification (spec-block) and body
(body-block). It should not have been previously (w.r.t. compilation order) defined in the same
scope, nor as a function in any scope.

<spec-block> ::= [{[<func-attrs>]} o <formal-arg> * <return-spec> o
 {/local <local-var> +} o]

<func-attrs> ::= infix

| stdcall | cdecl {variadic | typed} o| {variadic | typed} cdecl o

The usage of the attribute infix is discussed in section 4.

An attribute value of cdecl changes the function�s calling convention to C convention. This
allows to safely pass a Red/System function as argument to imported C functions. The default
calling convention is stdcall.

The attributes variadic and typed each require that the function have exactly two formal-args
(see next), one of type integer! representing the number of actual arguments and one
representing a list of (pointers to) the actual arguments themselves, which are supplied at the
point of function-call by a block of values. For a �variadic function�, this second argument is of
type pointer![integer!], thus allowing for arguments of any type, while for a �typed
function�, the second argument is of type struct![value [integer!] type [integer!]],
allowing for transmission of type information with each actual argument, in the form of a type
number (see Annex 3).

<formal-arg> ::= <word> [<type>] <c-string> o

The word is specified as a formal argument having the indicated type. It should not be the same
as another formal argument of this function. The optional C-string is for documentation purposes
only; it has no run-time effect.

<return-spec> ::= return: [<type>]

The type following return: is that of the function�s return value.

<local-var> ::= <word> {[<type>]} o

The word is specified as a local variable, possibly with its type. It should not be the same as
another local variable or formal argument of this function.

<ext-spec-block> ::= [<ext-formal-arg> * <return-spec> o]

An ext-spec-block is like a spec-block, but for library or operating system functions.

<ext-formal-arg> ::= <word> [<ext-type>] <c-string> o

<ext-type> ::= <type> | <func-type> | <func-alias>

<func-type> ::= function! [<spec-block>]

External functions (i.e. library functions and system-call functions) can take (callback) functions
as arguments. In this case, the formal argument has a func-type instead of a normal type, and the
actual argument must be an expression whose type is compatible (see section 8) with that func-

type, e.g. a get-word where the qualified-word has been defined as a function, or the result of a
type-cast where the ext-type is a func-type. The value null, meaning no function, is also
admissible as an actual argument.

<body-block> ::=

[{<directive> | <definition> | <statement> | <expression> | <comment>} *]

An expression occurring directly within the body-block of a function-definition will be evaluated
but its value will be discarded, except if it is the last such expression evaluated in the body-block,
and the function defined has a return-spec, in which case the value will be yielded as the result of
the function, unless the result is determined in a subsequent return-statement. Indeed the
evaluation of the last expression may be followed by the execution of any number of non-
expression elements.

<context-definition> ::= <word>: context <body-block>

The word will be defined in the current scope to name the context (�namespace�) of all names
defined in directives, definitions and statements directly occurring in the body-block. It must not
have been defined in the same or a containing scope. Outside the body-block (but within the
scope of the context name) the defined variables etc. can be referred to by �qualification�, see
section 5. Contexts may be nested.

<alias-definition> ::= <word>: alias {<struct-type> | <func-type>}

The word will be defined as a struct![�] type or a function![�] pseudo-type. The word
should not have been previously (w.r.t. compilation order) defined in the same scope nor as an
alias in any scope and it may not be one of the base-type names (see section 7). Conventionally,
such words end in !.

The struct-type may have fields whose type is the word being defined, thus making self-
referencing possible. A word defined as func-type may be used in ext-formal-args, in a declare
construct (see section 4) and in type-casts.

3. names and scopes: summary

Red/System has static scoping of names. Names which have a scope are of the following kinds:
� global variable names (defined implicitly by occurring in an assignment at program level)
� formal argument names (defined in the spec-block of a function)
� local variable names (idem)
� type names (pre-defined, defined in an alias-definition or by an enumeration-directive)
� function names (defined in an interface-directive or a function-definition)
� context names (defined in a context-definition)
� enumeration value names (defined by an enumeration-directive)

The scope of a global variable name comprises the whole program. The scope of formal
argument names and local variable names is the body-block of the function in the spec-block of
which they have been defined. The scope of a pre-defined type name is the whole program. The
scope of any other type name, and of any function name, context name and enumeration value
name is the body-block in which it has been defined. In all cases, names cannot be used before
(in compilation order) they have been defined, except as explained under alias-definition in
section 2.

The scope of a name does not include those body-blocks (of functions and contexts) which are
contained within it, and in which another definition of that name is given.

Type names must be unique throughout the program, but variables (both global and local,
including formal arguments), functions, contexts and enumeration values with the same names
may co-exist with them. This is possible because type names are only used in very specific
constructs and no confusion can arise.

Functions names must be unique throughout the program.

4. statements

<statement> ::=
 <function-call>
 | <assignment>
 | <return-statement>
 | <conditional-statement>
 | <with-block>
 | <assertion>

<function-call> ::=
 <fixed-arguments-function-call>
 | <variable-arguments-function-call>

If the function-call is a statement, the function may or may not have a return value, which will be
discarded.

<fixed-arguments-function-call> :: = <qualified-word> <expression> *

The qualified-word must be defined as a function, which should not have the attribute variadic
or typed. The expressions, if any, must correspond in number and be compatible in type with the
formal arguments of the function (see section 8 for the type compatibility rules). The function
will be called with the evaluated expressions as actual arguments. For arguments of type
c-string!, pointer![�] and struct![�] and of peudo-type function![�], the address will
be passed, for others the value.

<variable-arguments-function-call> ::=

<qualified-word> {<expression> | [<expression> +]}

The qualified-word must be defined as a function, which should have the attribute variadic or
typed. The expression(s) will be used to construct the two actual arguments corresponding to the
formal arguments as described under func-attrs above.

<assignment> ::= <lh-side> <rh-expression>
<lh-side> ::= {<qualified-word>: | <path>:}

An assignment associates the value of its rh-expression with a qualified-word or a path.

If the assignment is a direct element of a program and the lh-side is a word, and this is the
lexically first occurrence of an assignment with this word, the word will be registered as a global
variable having the type of the rh-expression (implicit definition). The type will be used for
compatibility checks in subsequent (w.r.t compilation order) assignments involving this word. If
the assignment is directly within the body-block of a function-definition, and the lh-side is a word
which is not a global variable, it should have been explicitly defined as a formal argument (with
its type) or a local variable (possibly with its type) in the corresponding spec-block. For local
variables without a type, the lexically first occurrence of an assignment as a direct element of the
body-block will serve to register the type. If the assignment is directly within the body-block of a
context-definition and the lh-side is a word, it will be registered as a variable within the named
context, having the type of the rh-expression.

For an assignment where the lh-side is a qualified-word which is not a word, or a path, no
implicit definition is made and no type inference will occur. The qualified-word should have
been defined, with its type, in a � possibly nested � context within the current scope or any
containing scope. The first word of the path should have been defined, with its type, in the
current or any containing scope. The type of the value resulting from the rh-expression should be
compatible with that of the lh-side (see section 8 for detailed compatibility rules).

<rh-expression> ::=
 <expression>

 | declare {<pointer-type> | <struct-type> | <struct-alias> | <func-alias>}

Literal values of the types pointer![�] and struct![�], and of the function[�] pseudo-type
are introduced by declare. The actual value created is implementation dependent.

<return-statement> ::= exit | return <expression>

A return-statement may only occur within the body-block of a function. The exit statement
causes return from the function without a return value. It is allowed only if the function has no
return value specified. The return statement causes return with a value, namely that of the
expression, which must have the type of the function�s return value.

<conditional-statement> ::=
 if <cond-expression> <code-block>
 | either <cond-expression> <code-block> <code-block>
 | case [{<cond-expression> <code-block>} +]
 | switch <expression> [{<selectors> <code-block> +} {default <code-block>} o]
 | until <cond-block>
 | while <cond-block> <code-block>

The semantics of these constructs follow closely those of the corresponding REBOL ones.

<cond-expression> ::= <expression>

The expression should yield a value of type logic!.

<cond-block> ::= [{<statement> | <expression> | <comment>} +]

There should be at least one expression directly occurring within a cond-block. The value of the
last such expression should be of type logic!; it is used for determining program flow in the
until or while statement in which the cond-block occurs. No statements may follow this last
expression.

<code-block> ::= [{<statement> | <expression> | <comment>} +]

An expression occurring directly within a code-block will be evaluated but its value will be
discarded.

<selectors> ::= <expression> +

Each expression must be of type integer! or byte! and all expressions occurring in the
selectors must be of the same type which must be identical (but for synonyms) to that of the
expression after switch.

<with-block> ::= with {<word> | [<word> +]} <code-block>

The word should name a context. Within the code-block, the names defined in that context are
available without needing qualification by path notation. If a list of words is specified and if the
contexts named have one or more names defined in more than one of them, name resolution is
done in the context that is defined last in compilation order.

<assertion> ::= assert <cond-expression>

This statement is intended to help in debugging. If the cond-expression is not true, a runtime
error will be raised.

5. expressions

<expression> ::= <value> | <type-cast> | <short-circuit> | <size-enquiry>
 | <unary-operation> | <binary-operation>

<value> ::= <simple-value> | (<expression>) | <function-call>

If the function-call is a value, the function should have a return value, and should have the type
of the return value specified in its spec-block. See further under statement in section 4.

<simple-value> ::= <literal> | <get-word> | <qualified-word> | <path>

A qualified-word (not having been defined as a function and not being a literal-word) or path
used as simple-value should have been (defined and) initialized as a global or local variable, or
defined as a formal argument. See also above, under assignment. For information on the allowed
literals see section 9.

Note that a path is syntactically indistinguishable from a qualified-word. The distinction can only
be made on the basis of the definition of the first word in each construct. As will be seen below,
this is either a context name or a variable name.

<get-word> ::= :<qualified-word>

If the qualified-word has been defined as a function, the result is a value equal to the address of
(the entry-point of) the function, which can only be used directly as argument in a function-call
(where the function called is a library or system function), in an assignment, or in a type-cast.
The type of this value is function![<spec-block>], where <spec-block> is the spec-block of
the function.
If the qualified-word has been defined as a variable of type integer!, byte!, float!, float32!
or float64!, the result is a value of type pointer![<pointed-type>] where <pointed-type>
is the type of the variable.

<qualified-word> ::= <word> | <qualifier><word>

If the word is preceded by a qualifier, it�s definition is found in the (nested) context named by
that qualifier.

<qualifier> ::= <context-name>/ | <qualifier><context-name>/
<context-name> ::= <word>

The context-names making up the qualifier are used to identify the (nested) context in which to
find the definition of the qualified-word.

<path> ::= <path-head>/{<word> | <integer>}

Path expressions select components of types c-string!, pointer![�] or struct![�]. If the
path-head yields a C-string value, both a word that is an integer variable or an enumeration-

value-name, and an integer (i.e. integer literal) are allowed as selector. If the integer value is
smaller than 1 or larger than the length of the string, the result is undefined, otherwise it selects a
byte of the string (1-origin indexing), of type byte!. If the path-head yields a value of type
struct![�], only words equal to the field names are allowed; they select the corresponding field
value. If the path-head yields a value of type pointer![�], the word value (equivalent to 1), a
word that is an integer variable or an enumeration-value-name, and an integer are allowed. If the
integer value is not equal to 1, the result may be undefined, otherwise it selects the value (of type
pointed-type) that the pointer points to.

<path-head> ::= <word> | <path>

The word should be a global variable or a formal argument or local variable of a function.

<type-cast> ::= as {<ext-type> | [<ext-type>]} <expression>

This signifies explicit type conversion. The brackets [] around the target type (ext-type) are
optional, as shown. The expression must not be the literal null nor must it be itself a type-cast.
The following combinations of ext-type and type of expression are allowed, with the indicated
effect:

ext-type type of expression converted value
logic! integer!, byte! 0 or #"^(00)" -> false
 others->true
integer!, byte! logic! false -> 0 or #"^(00)"
 true -> 1 or #"^(01)"
logic! pointers! null -> false, others->true
integer! byte! same value 0..255
byte! integer! truncated value (mod 256)
integer! float32! bit pattern kept
float32! integer! bit pattern kept
integer! any-pointer! address value
any-pointer! integer! address value
function![�] function![�] address value

Here pointers! = c-string! or pointer![�] or struct![�]
 any-pointer! = pointers! or function![�]

All combinations not mentioned above are in error, except when the two types are equal in which
case a warning will be given about the type-cast being unnecessary. For function![�] pseudo-
types, �equality� means equality of the types of the formal arguments (not their names) and of
the result, in addition to identity of the calling convention (attribute cdecl or stdcall); see also
section 8.

<short-circuit> ::=

 either <cond-expression> <value-block> <value-block>
 | case [{<cond-expression> <value-block>} +]
 | switch <expression> [{<selectors> <value-block> +}

{default <value-block>} o]
 | {any | all} [<cond-expression> +]

The short-circuit constructs with either, case and switch have the constraint that the resulting
values of all value-blocks (see below) should have the same type. Otherwise they are identical in
form to the corresponding conditional-statements. Thus if the constraint is not fulfilled and the
short-circuit, as expression, occurs directly within a program or body-block, it will be considered
a statement.
The expressions with any and all yield a logic value which is the logical disjunction (or) resp.
conjunction (and) of all constituent cond-expressions.
In these short-circuit expressions, only those evaluations of the (cond-)expressions are done (in
lexical order) that are necessary to determine the result.

<value-block> ::= [{<statement> | <expression> | <comment>} +]

The last expression evaluated in a value-block is used as the resulting value in the corresponding
alternative of the short-circuit. No statements may follow this expression.

<size-enquiry> ::= size? {<expression> | <base-type>}

A size-enquiry yields an implementation-dependent integer value, which is the number of bytes
in memory occupied by the value of the expression, resp. by a value of (any type suggested by)
the base-type. When the expression is of composite type (i.e. represents an address), the size
applies to the value pointed to, not to the address itself. For base-types this is not the case.

<unary-operation> ::= not <expression>

The operand of the not operator should be of integer! or logic! type and the result has the
same type. Applied to an integer value the result is the one�s complement (not 0 => -1).

<binary-operation> ::= <expression> <infix-operator> <value>

Infix-operators are applied without precedence, from left to right. They are applied before
function-calls, unary-operators and type-casts.

<infix-operator> ::= <math-op> | <bitwise-op> | <comparison-op> | <word>

The word should be defined as an infix function (i.e. one having func-attrs [infix]). This
function should have two formal arguments (operands) and specify the type of its return value.

<math-op> ::= + | - | * | / | % | //

The signs + - * / have their usual mathematical meaning. The sign % means remainder (result
has the sign of the divider) and // means modulo (positive result).

<bitwise-op> ::= and | or | xor | << | >> | >>>

The operators and or xor operate as expected; the sign << is left shift, >> and >>> are right shift
(with and without sign extension).

<comparison-op> ::= = | <> | > | < | >= | <=

Also these signs have their usual mathematical meaning.

6. binary operations

The admissible operand types and the result type of the literal infix-operators are as follows:

operator left operand right operand result
+ - poly! poly! same as left operand
* / % // any-number! any-number! same as left operand
<< >> >>> number! number! same as left operand
and or xor number! number! same as left operand
= <> any-type! any-type! logic!
> < >= <= poly! poly! logic!

Here
number! = integer! or byte!
any-number! = number! or float! or float64! or float32!
poly! = any-number! or any-pointer! (see also above, under type-cast)
any-type! = poly! or logic!
Infix operations on any-pointer! operands always use the machine address as operand value.

Except for the bitshift operators << >> >>>, the two operands should have equal type. In
addition, for the combinations integer!/byte! v.v. all math-ops are allowed. Also, with the
operators + and -, values of type any-pointer! can be freely combined with each other and with
integer! values; note that where the second operand is of type integer!, its value is scaled by
the size (number of bytes occupied in memory) of the value that the pointer points to, as is the
case in C.

Furthermore, the value null can be compared with any value of type any-pointer!.

7. types

<type> ::= <simple-type> | <composite-type> | <struct-alias>

<simple-type> ::= integer! | byte! | logic! | float! | float32!
 | float64! | <enumeration-type-name>

The type names float! and float64! are synonyms. The value ranges of these simple-types are:
integer! � 32 bit signed integers, byte! � 8 bit unsigned integers, logic! � true/false,
float! � IEEE-754 64 bit double precision floating point numbers, float32! � IEEE-754 32 bit
single precision floating point numbers.

<enumeration-type-name> :: = <word>

The word should have been defined as an enumeration type name in an enumeration-directive
(see section 1). It is treated as synonym with integer!.

<composite-type> ::= c-string! | <pointer-type> | <struct-type>

A value of type c-string! is a null-terminated sequence of bytes representing a string of
characters from a machine- and OS-dependent character set.

<pointer-type> ::= pointer! [<pointed-type>]

A value of a pointer-type is a machine address interpreted as a pointer to a typed value.

<pointed-type> ::= integer! | byte! | float! | float32! | float64!

Further alternatives for pointed-type may be defined, e.g. <enumeration-type-name>.

<struct-type> ::= struct! [<struct-attr> o <field> +]

A value of a struct-type, or �struct�, represents aggregate data consisting of named and typed
value fields.

<struct-attr> ::= align <integer> {big | little} o

Structure attributes (struct-attr) are not yet implemented.

<field> ::= <word> [<type>]

The word is specified as a named field having the indicated type.

<base-type> ::= <simple-type> | c-string! | <alias>

| pointer! | struct! | function!

A base-type may be used as argument for the size? function, and where it is not a simple-type,
c-string! or alias, it represents any ext-type starting with one of the indicated words.

<alias> ::= <struct-alias> | <func-alias>

<struct-alias> ::= <word>

The word should have been defined as a struct![�] type, in an alias-definition.

<func-alias> ::= <word>

The word should have been defined as a function![�] pseudo-type, in an alias-definition.

<ext-type> ::= <type> | <func-type> | <func-alias>

8. type compatibility rules

Type compatibility applies in the following cases: between the source type and target type of a type-cast,
between the left and right operands of an infix-operator, between the left hand side and the right hand
side of an assignment, and between each actual argument of a function-call and the corresponding
formal argument of the function called.

The rules concerning type-casts are given in section 5. The case of a literal infix-operator is treated in
section 6. The application of a user-defined function that has the attribute infix is treated like a normal
function-call of two arguments, see immediately below.

In the case of an assignment or a function-call, the requirement is �equality� of the two types after
resolution of aliases and synonyms. For simple-types and c-string! this means identity of the type
names. For struct![�] types, equality means that corresponding field names and field types must be
identical. For function![�] pseudo-types, the spec-blocks are compared for equality of the types of the
formal arguments (not their names) and of the result, in addition to identity of the calling convention
(attribute cdecl or stdcall).

The value null is compatible with left hand sides resp. formal arguments of c-string!, pointer![�]
and struct![�] type and of function![�] pseudo-type.

9. literals and words

<literal> ::= <integer> | <byte> | <decimal> | <c-string> | <literal-word>

<integer> ::= "REBOL literal integer value"

The current compiler version (written in REBOL) accepts ' signs in integers, even though these
do not seem to be part of the specification. Integers in hex notation are pre-processed by the
Red/System loader.

<byte> ::= "REBOL literal char value"

<decimal> ::= "REBOL literal decimal value"

<c-string> ::= "REBOL literal string value"

<literal-word> ::= true | false | null | <enumeration-value-name>

The literal-words true and false are of type logic!. The literal-word null is pre-defined as an
address value 0 that is compatible with c-string! and any pointer![�] or struct![�] type,
and function![�] pseudo-type.

<enumeration-value-name> :: = <word>

The word should have been defined as an enumeration value name in an enumeration-directive
(see section 1). Its value is of type integer!.

<word> ::= "REBOL word, except reserved words, and with restrictions"

Names of (global and local) variables, formal arguments, functions and types, as well as
enumeration types and values, aliases and context-names are words which are a subset of the
REBOL values of type word!: they are composed of characters in the range 21h to 7Eh with the
exception of the following set:

[] { } " () / \ @ # $ % ^ , : ; < >
and they cannot begin with a digit 0-9 or a single quote '. Thus in addition to the alphanumeric
characters, the following are allowed: ! & ' * + - . = ? _ ` | ~, but of these ' not at the
beginning. Names are case-insensitive. Conventionally, type names end in !

Annex 1: reserved and predefined words

The following words have special significance in Red/System:

keywords and operator symbols

alias func function declare
if either case switch
until while context with
assert exit return comment
as not size? any all
and or xor
= <> > < >= <=
+ - * / // % ///
<< >> >>> -**

literal words

true false null

predefined functions

pop push

base types

integer! byte! logic! float! float32! float64!
c-string! pointer! struct! function!

attribute names

stdcall cdecl infix
align big little

field name

value

special structure name

system

The reserved words are shown in bold in the above list. An attempt to redefine them will give a
compilation error. The base-types can be redefined as variables or functions, but not as type names. The
word & is reserved for future use, but this reservation is not enforced by the current compiler.

The words /// and -** are temporary internal replacements for % and >>>, which are not accepted by
the REBOL loader and cannot be used in the version of the compiler written in REBOL.

Note that the current compiler for Red/System uses a number of standard �include files� with macro
definitions that effectively predefine a large number of words in addition to those listed above, such as
byte-ptr! (for pointer! [byte!]) etc. Since these definitions may be changed without affecting the
language as described, and since their meaning may vary with the target operating system and machine
architecture, they are not listed here.

Annex 2: the system structure

Red/System offers direct access to a number of objects through the predefined structure system. This is
defined as follows:

system: declare struct! [;-- store runtime accessible system values
 args-count [integer!] ;-- command-line arguments count (do not move)
 args-list [str-array!] ;-- command-line arguments array pointer (do not move)
 env-vars [str-array!] ;-- environment variables array pointer

; (always null for Windows)
 stack [__stack!] ;-- stack virtual access
 pc [pointer! [byte!]] ;-- CPU program counter value
; cpu [__cpu-struct!] ;-- reserved for later use
 fpu [__fpu-struct!] ;-- FPU settings
 alias [integer!] ;-- aliases ID virtual access
 words [integer!] ;-- global context accessor (dummy type)
]
__stack!: alias struct! [
 top [pointer! [integer!]]]
 frame [pointer! [integer!]]]
]
__fpu-struct!: alias struct! [;-- Intel x87 case
 type [integer!]
 option [x87-option!]
 mask [x87-mask!]
 control-word [integer!] ;-- direct access to whole control word
 epsilon [integer!] ;-- Ulp threshold for almost-equal op (not used yet)
 update [integer!] ;-- action simulated using a read-only member
]
x87-mask!: alias struct! [;-- x87 exception mask (true => disable exception)
 precision [logic!]
 underflow [logic!]
 overflow [logic!]
 zero-divide [logic!]
 denormal [logic!]
 invalid-op [logic!]
]
x87-option!: alias struct! [
 rounding [integer!]
 precision [integer!]
]
str-array!: alias struct! [
 item [c-string!]
]

Accesses (both get and set) to the fields stack, pc and fpu of this structure are caught by the
compiler/emitter and translated specially.

The field system/stack represents the run-time stack that is used for argument transmission and other
purposes (saving of intermediate results). The paths system/stack/top and system/stack/frame can
be used to get and set the addresses of the stack top and stack frame respectively, as a value of type
pointer![integer!]. Furthermore there is defined a built-in function pop of no arguments, which
yields the value of system/stack/top as an integer! and in addition pops the stack, and a function
push of one argument, of any type, which pushes the value of its argument on the stack.

The field system/pc represents the program counter as a byte address (get only).

The field system/fpu gives access to properties of the floating point unit (if present). For illustration the
Intel x87 architecture case is shown.

The field system/alias gives access to the internal type numbers of type names defined through an
alias-definition. Conventionally, these type numbers are 1000 + the ordinal number of the alias name in
the internal hash table of alias definitions.

The field system/words gives access to the global definitions of names that may have been redefined
locally.

Annex 3: type numbers

logic! 1
integer! 2
byte! 3
float32! 4
float! 5
c-string! 6
byte-ptr! 7
int-ptr! 8
function! 9
struct! 1000
aliases 1001 �

