
What is Red?

ReCode 2013, Montréal Nenad "DocKimbel" Rakocevic

Why Red?

Let's start by taking a bird's eye view

Why Red?

We are still at a very early age of computing…

Why Red?

…and in the future, AI will laugh at our technologies!

Why Red?

There are thousands of programming tools/languages…

Why Red?

…but we are still searching for the right one.

Why Red?

We are often wasting time to workaround dead ends…

Bloatware
Exploding complexity

Slow performances

Black boxes

Why Red?

…while we should have fun working on computers!

Why Red?

Our computing world is going through deep changes…

"Massively parallel 64 core
computer costs $99" -Parallela

We are moving away from
traditional computers.

Why Red?

…yet we are using rusty software solutions.

Year of Birth

1972

1995

1983

1983

1995

Why Red?

Rebol was partially answering those concerns…

Why Red?

…doing wonders, only recently acknowledged,…

Programming languages ranked by expressiveness

Why Red?

…but Red will go far beyond!

What is Red?

• A "full stack" programming language
– True general-purpose programming solution
– A stand-alone toolchain

• A tool for empowering users
– Simple to use
– Unlimited usage, no arbitrary restrictions
– Feeling "in control" again

Red is bringing back the fun to programming!

DSL

Natural scope of application

Hardware

Scripting

Applications

OS

Drivers

Abstraction level

C Pascal Java C++

Ruby

Python

ASM

Javascript

Red

Red/System

REBOL

Meta DSL
Rascal

A standalone toolchain 1/5

Red

DesktopEmbedded

Windows

Linux

MacOS X

Syllable

Android devices

Arduino boards

(AVR 8/32-bit)

Virtual Machines

JVM
.NET Javascript

FreeBSD

iOS devices

Raspberry Pi

A standalone toolchain 2/5
• Compile script and run it from memory

$ red script.red

• Compile script and output an executable
$ red –o script script.red

• Cross-compile script and output an executable
$ red –t Windows –o script script.red

• Compile a Red/System script and output an executable
$ red script.reds

• Compile script as shared library
$ red –dlib script.red

• Launch Red in REPL mode
$ red

Currently: >> do/args %red.r "-dlib script.red"

A standalone toolchain 3/5

Target ID Target Description

MSDOS Windows, x86, console-only applications

Windows Windows, x86, native applications

Linux GNU/Linux, x86

Linux-ARM GNU/Linux, ARMv5

Darwin Mac OS X Intel, console-only applications

Syllable Syllable OS, x86

Android Android, ARMv5

Android-x86 Android, x86

$ red –t <TargetID> script.red

• Cross-compilation made right!

A standalone toolchain 4/5

Compiler

Linker

Packager

Red toolchain

x86, ARMv5+,

ARMv7, Thumb, x86-64,…

x86, ARMv5+,

ARMv7, Thumb, x86-64,…

JS, JVM bytecode, Dex, MSIL,…

PE, ELF, Mach-o, Intel-HEX

Executable, Shared library

Static library, kernel driver,…

Android - APK

iOS - IPA

Webapps – WAR

...

A standalone toolchain 5/5

Bootstrapped Self-hosted

in Rebol 2 in Red

Last dependency to remove for full feature access!

JIT-Compiler

2011-2013 2014

Red language 1/4

• Syntax and semantics very close to Rebol
– Definitional scoping
– Dynamic binding

• Paradigm-neutral
– Imperative, OOP, functional, symbolic,…

• Optionally typed arguments and locals
– From pure interpretation to very specialized compilation
– Type inference by default, when possible

Red language 2/4

• Unicode support
– Input sources in UTF-8, external codec for other encodings
– Auto-adaptative internal representation: UCS-1, UCS-2 or UCS-4

• Concurrency support
– Task parallelism: light threads over multiple cores with Actors.
– Data parallelism: SIMD and multi-cores processing using parallel

series.

• Meta-DSL abilities
– DSL-maker dialect (higher-level than PARSE)

Red language 3/4

• Compiles to Red/System code

a: 1 + b

'a

1

'b

stack/mark-native ~set

word/push ~a

stack/mark-native ~add

integer/push 1

word/get ~b

actions/add*

stack/unwind

word/set

stack/unwind

Red stackRed input Red/System output

SET

ADD

Red language 4/4

• Compiled, interpreted, JIT-compiled

Interpreter

JIT-compiler

AOT-compiler

Run-time

Compile-time
Compiled

code

Red code example

Red [title: "Hello"]

print "Hello World!"

inc: func [n [integer!]][n + 1]

foo: function [a [integer!] /bar return: [string!]][

z: "zero"

either integer? a [

return z

][

append "result=" mold inc a

]

]

Red internals

Host Interface

Memory Manager

Datatypes Natives

Kernel

OS API

Lexer I/O

Interpreter JIT-compiler

Hardware

.NetObj-CJava

Red/System

Lexer

Parser

Emitter

Linker

Packager

Red/System

Lexer

Parser

Emitter

Red

Compilers

Rebol 2
C

om
m

and-line F
ront-end

Red Runtime

Red
Console

Red Rebol 2

Bridges

Boot script

Natives

I/O

Incomplete

Unimplemened

Red/System overview

• Purely imperative, C-level language, with a Red syntax
• Statically compiled, x4 slower than C (naïve compilation for now)
• Namespaces support: context, with

• Limited type system:
– Logic!, byte!, integer!, float!, float32!, struct!, pointer!, c-string!, function!
– Simple type inference
– Type casting supported
– Values type reflexion (variadic RTTI functions)

• Compiler directives: #define, #include, #import, #syscall, #if,
#either, #switch,…

• Low-level CPU support (interruptions, I/O, stack, privileged mode)
• Inlined ASM support

Red project metrics

• BSD license (BSL for the runtime parts)

• Source code hosted on Github since March 2011
– version 0.3.2, 9 commiters, ~2050 public commits
– 496 tickets in bugtracker (95% closed)
– ~18000 unit tests (framework built by Peter WA Wood)

– 390 KiB of sources for Red/System
– 8500 LOC for Red/System compiler
– 2600 LOC for Red/System linker

– 2800 LOC for Red compiler
– 800 LOC for Red interpreter
– 14000 LOC for Red runtime library (~150KiB compiled on x86)

Red remaining tasks for 1.0, until…

• Complete core parts:
– implement object!, error!, typeset!, binary!, decimal!, date!, time!, …
– add proper error handling and arguments type-checking
– implement I/O infrastructure
– implement concurrency support
– define a module system and modular compilation

• Provide a minimal Red IDE

• Documentation:
– Write Red reference documentation
– Write some first-steps tutorials

• Prepare a new red-lang.org site for 1.0 launch

… the real Red!

• Real Red will be the 2.0

… the real Red!

• Final compiler architecture
– Two-stage JIT-compiler, with optional AOT optimizations
– Documented public API for lexer, parser, emitter and linker
– Plugin-oriented internal architecture
– Written purely in Red (self-hosted)
– Red/System: improved and cleaned-up syntax and semantics
– Very open to contributors!

• Implications for current codebase in Rebol 2
– Disposable code with limited lifetime
– Not documented, monolithic, rigid, not meant for contributions

Project Organisation

• 2 collaborators on Github
• 11 contributors
• 2 mailing-list admins
• 3 Facebook Red page admins
• iiqux (IRCbot for reporting commits)
• You?

Project Funding

Thank you for listening.

Any questions?

